Anesthesiology and Pain Medicine

Published by: Kowsar

Meeting Between Rumi and Shams in Notch Signaling; Implications for Pain Management: A Narrative Review

Samira Rajaei 1 , Yousef Fatahi 2 and Ali Dabbagh 3 , *
Authors Information
1 Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
2 Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
3 Cardiac Anesthesiology Department, Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Article information
  • Anesthesiology and Pain Medicine: 9 (1); e85279
  • Published Online: January 8, 2019
  • Article Type: Review Article
  • Received: October 12, 2018
  • Accepted: November 28, 2018
  • DOI: 10.5812/aapm.85279

To Cite: Rajaei S, Fatahi Y, Dabbagh A. Meeting Between Rumi and Shams in Notch Signaling; Implications for Pain Management: A Narrative Review, Anesth Pain Med. Online ahead of Print ; 9(1):e85279. doi: 10.5812/aapm.85279.

Abstract
Copyright © 2019, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Cellular Aspects of Rumi and Shams Interactions
2.3. Meeting Between Rumi and Shams
3. Clinical Aspects of the Meeting Between Rumi and Shams
4. Activation of Notch Signaling Pathway and its Implications in Pain Management: A New Hope for Treatment of Pain
5. Conclusions
Acknowledgements
Footnotes
References
  • 1. Lewis FD. Rumi-past and present, east and west: The life, teachings, and poetry of Jalâl Al-Din Rumi. Oneworld Publications; 2014.
  • 2. Dabbagh A, Rajaei S, Golzari SE. History of anesthesia and pain in old Iranian texts. Anesth Pain Med. 2014;4(3). e15363. doi: 10.5812/aapm.15363. [PubMed: 25237631]. [PubMed Central: PMC4164984].
  • 3. Kovall RA, Gebelein B, Sprinzak D, Kopan R. The canonical Notch signaling pathway: Structural and biochemical insights into shape, sugar, and force. Dev Cell. 2017;41(3):228-41. doi: 10.1016/j.devcel.2017.04.001. [PubMed: 28486129]. [PubMed Central: PMC5492985].
  • 4. Stanley P. Glucose: A novel regulator of Notch signaling. ACS Chem Biol. 2008;3(4):210-3. doi: 10.1021/cb800073x. [PubMed: 18422303].
  • 5. McKellar SH, Tester DJ, Yagubyan M, Majumdar R, Ackerman MJ, Sundt T3. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J Thorac Cardiovasc Surg. 2007;134(2):290-6. doi: 10.1016/j.jtcvs.2007.02.041. [PubMed: 17662764].
  • 6. Louvi A, Artavanis-Tsakonas S. Notch signalling in vertebrate neural development. Nat Rev Neurosci. 2006;7(2):93-102. doi: 10.1038/nrn1847. [PubMed: 16429119].
  • 7. Pakkiriswami S, Couto A, Nagarajan U, Georgiou M. Glycosylated Notch and cancer. Front Oncol. 2016;6:37. doi: 10.3389/fonc.2016.00037. [PubMed: 26925390]. [PubMed Central: PMC4757683].
  • 8. Zhang M, Biswas S, Qin X, Gong W, Deng W, Yu H. Does Notch play a tumor suppressor role across diverse squamous cell carcinomas? Cancer Med. 2016;5(8):2048-60. doi: 10.1002/cam4.731. [PubMed: 27228302]. [PubMed Central: PMC4884632].
  • 9. Lee TV, Sethi MK, Leonardi J, Rana NA, Buettner FF, Haltiwanger RS, et al. Negative regulation of Notch signaling by xylose. PLoS Genet. 2013;9(6). e1003547. doi: 10.1371/journal.pgen.1003547. [PubMed: 23754965]. [PubMed Central: PMC3675014].
  • 10. Bakker H, Gerardy-Schahn R. A sweet development in Notch regulation. J Biol Chem. 2017;292(38):15974-5. doi: 10.1074/jbc.H117.800102. [PubMed: 28939751]. [PubMed Central: PMC5612126].
  • 11. Li Z, Fischer M, Satkunarajah M, Zhou D, Withers SG, Rini JM. Structural basis of Notch O-glucosylation and O-xylosylation by mammalian protein-O-glucosyltransferase 1 (POGLUT1). Nat Commun. 2017;8(1):185. doi: 10.1038/s41467-017-00255-7. [PubMed: 28775322]. [PubMed Central: PMC5543122].
  • 12. Takeuchi H, Yu H, Hao H, Takeuchi M, Ito A, Li H, et al. O-Glycosylation modulates the stability of epidermal growth factor-like repeats and thereby regulates Notch trafficking. J Biol Chem. 2017;292(38):15964-73. doi: 10.1074/jbc.M117.800102. [PubMed: 28729422]. [PubMed Central: PMC5612125].
  • 13. Sawaguchi S, Varshney S, Ogawa M, Sakaidani Y, Yagi H, Takeshita K, et al. O-GlcNAc on NOTCH1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals. Elife. 2017;6. doi: 10.7554/eLife.24419. [PubMed: 28395734]. [PubMed Central: PMC5388531].
  • 14. Saint Just Ribeiro M, Wallberg AE. Transcriptional mechanisms by the coregulator MAML1. Curr Protein Pept Sci. 2009;10(6):570-6. doi: 10.2174/138920309789630543. [PubMed: 19751190].
  • 15. Kitagawa M. Notch signalling in the nucleus: Roles of Mastermind-like (MAML) transcriptional coactivators. J Biochem. 2016;159(3):287-94. doi: 10.1093/jb/mvv123. [PubMed: 26711237].
  • 16. Plos Genetics Staff . Correction: RBPJ, the major transcriptional effector of Notch signaling, remains associated with chromatin throughout mitosis, suggesting a role in mitotic bookmarking. PLoS Genet. 2016;12(7). e1006209. doi: 10.1371/journal.pgen.1006209. [PubMed: 27427944]. [PubMed Central: PMC4948850].
  • 17. Lake RJ, Tsai PF, Choi I, Won KJ, Fan HY. RBPJ, the major transcriptional effector of Notch signaling, remains associated with chromatin throughout mitosis, suggesting a role in mitotic bookmarking. PLoS Genet. 2014;10(3). e1004204. doi: 10.1371/journal.pgen.1004204. [PubMed: 24603501]. [PubMed Central: PMC3945225].
  • 18. Tanigaki K, Honjo T. Two opposing roles of RBP-J in Notch signaling. Curr Top Dev Biol. 2010;92:231-52. doi: 10.1016/S0070-2153(10)92007-3. [PubMed: 20816397].
  • 19. Ishio A, Sasamura T, Ayukawa T, Kuroda J, Ishikawa HO, Aoyama N, et al. O-fucose monosaccharide of Drosophila Notch has a temperature-sensitive function and cooperates with O-glucose glycan in Notch transport and Notch signaling activation. J Biol Chem. 2015;290(1):505-19. doi: 10.1074/jbc.M114.616847. [PubMed: 25378397]. [PubMed Central: PMC4281752].
  • 20. Irvine KD. A notch sweeter. Cell. 2008;132(2):177-9. doi: 10.1016/j.cell.2008.01.005. [PubMed: 18243091].
  • 21. Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR, et al. A novel proteolytic cleavage involved in Notch signaling: The role of the disintegrin-metalloprotease TACE. Mol Cell. 2000;5(2):207-16. doi: 10.1016/S1097-2765(00)80417-7. [PubMed: 10882063].
  • 22. Radtke F, Fasnacht N, Macdonald HR. Notch signaling in the immune system. Immunity. 2010;32(1):14-27. doi: 10.1016/j.immuni.2010.01.004. [PubMed: 20152168].
  • 23. Bray SJ. Notch signalling: A simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006;7(9):678-89. doi: 10.1038/nrm2009. [PubMed: 16921404].
  • 24. Acar M, Jafar-Nejad H, Takeuchi H, Rajan A, Ibrani D, Rana NA, et al. Rumi is a CAP10 domain glycosyltransferase that modifies Notch and is required for Notch signaling. Cell. 2008;132(2):247-58. doi: 10.1016/j.cell.2007.12.016. [PubMed: 18243100]. [PubMed Central: PMC2275919].
  • 25. Leonardi J, Jafar-Nejad H. Structure-function analysis of Drosophila Notch using genomic rescue transgenes. Methods Mol Biol. 2014;1187:29-46. doi: 10.1007/978-1-4939-1139-4_3. [PubMed: 25053479].
  • 26. Leonardi J, Fernandez-Valdivia R, Li YD, Simcox AA, Jafar-Nejad H. Multiple O-glucosylation sites on Notch function as a buffer against temperature-dependent loss of signaling. Development. 2011;138(16):3569-78. doi: 10.1242/dev.068361. [PubMed: 21771811]. [PubMed Central: PMC3143569].
  • 27. Lee TV, Takeuchi H, Jafar-Nejad H. Regulation of notch signaling via O-glucosylation insights from Drosophila studies. Methods Enzymol. 2010;480:375-98. doi: 10.1016/S0076-6879(10)80017-5. [PubMed: 20816218].
  • 28. Acar M, Mettetal JT, van Oudenaarden A. Stochastic switching as a survival strategy in fluctuating environments. Nat Genet. 2008;40(4):471-5. doi: 10.1038/ng.110. [PubMed: 18362885].
  • 29. Fernandez-Valdivia R, Takeuchi H, Samarghandi A, Lopez M, Leonardi J, Haltiwanger RS, et al. Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development. 2011;138(10):1925-34. doi: 10.1242/dev.060020. [PubMed: 21490058]. [PubMed Central: PMC3082299].
  • 30. Wu J, Hunt SD, Matthias N, Servian-Morilla E, Lo J, Jafar-Nejad H, et al. Generation of an induced pluripotent stem cell line (CSCRMi001-A) from a patient with a new type of limb-girdle muscular dystrophy (LGMD) due to a missense mutation in POGLUT1 (Rumi). Stem Cell Res. 2017;24:102-5. doi: 10.1016/j.scr.2017.08.020. [PubMed: 29034878]. [PubMed Central: PMC5679726].
  • 31. Harvey BM, Rana NA, Moss H, Leonardi J, Jafar-Nejad H, Haltiwanger RS. Mapping sites of O-Glycosylation and fringe elongation on drosophila Notch. J Biol Chem. 2016;291(31):16348-60. doi: 10.1074/jbc.M116.732537. [PubMed: 27268051]. [PubMed Central: PMC4965582].
  • 32. Rana NA, Haltiwanger RS. Fringe benefits: Functional and structural impacts of O-glycosylation on the extracellular domain of Notch receptors. Curr Opin Struct Biol. 2011;21(5):583-9. doi: 10.1016/j.sbi.2011.08.008. [PubMed: 21924891]. [PubMed Central: PMC3195399].
  • 33. Lee TV, Pandey A, Jafar-Nejad H. Xylosylation of the Notch receptor preserves the balance between its activation by trans-Delta and inhibition by cis-ligands in Drosophila. PLoS Genet. 2017;13(4). e1006723. doi: 10.1371/journal.pgen.1006723. [PubMed: 28394891]. [PubMed Central: PMC5402982].
  • 34. Yu H, Takeuchi M, LeBarron J, Kantharia J, London E, Bakker H, et al. Notch-modifying xylosyltransferase structures support an SNi-like retaining mechanism. Nat Chem Biol. 2015;11(11):847-54. doi: 10.1038/nchembio.1927. [PubMed: 26414444]. [PubMed Central: PMC4618232].
  • 35. Breton C, Fournel-Gigleux S, Palcic MM. Recent structures, evolution and mechanisms of glycosyltransferases. Curr Opin Struct Biol. 2012;22(5):540-9. doi: 10.1016/j.sbi.2012.06.007. [PubMed: 22819665].
  • 36. Hurtado-Guerrero R, Davies GJ. Recent structural and mechanistic insights into post-translational enzymatic glycosylation. Curr Opin Chem Biol. 2012;16(5-6):479-87. doi: 10.1016/j.cbpa.2012.10.013. [PubMed: 23142486].
  • 37. Lairson LL, Henrissat B, Davies GJ, Withers SG. Glycosyltransferases: Structures, functions, and mechanisms. Annu Rev Biochem. 2008;77:521-55. doi: 10.1146/annurev.biochem.76.061005.092322. [PubMed: 18518825].
  • 38. Sethi MK, Buettner FF, Ashikov A, Krylov VB, Takeuchi H, Nifantiev NE, et al. Molecular cloning of a xylosyltransferase that transfers the second xylose to O-glucosylated epidermal growth factor repeats of notch. J Biol Chem. 2012;287(4):2739-48. doi: 10.1074/jbc.M111.302406. [PubMed: 22117070]. [PubMed Central: PMC3268431].
  • 39. Sethi MK, Buettner FF, Krylov VB, Takeuchi H, Nifantiev NE, Haltiwanger RS, et al. Identification of glycosyltransferase 8 family members as xylosyltransferases acting on O-glucosylated notch epidermal growth factor repeats. J Biol Chem. 2010;285(3):1582-6. doi: 10.1074/jbc.C109.065409. [PubMed: 19940119]. [PubMed Central: PMC2804315].
  • 40. Lefort K, Ostano P, Mello-Grand M, Calpini V, Scatolini M, Farsetti A, et al. Dual tumor suppressing and promoting function of Notch1 signaling in human prostate cancer. Oncotarget. 2016;7(30):48011-26. doi: 10.18632/oncotarget.10333. [PubMed: 27384993]. [PubMed Central: PMC5216996].
  • 41. Carvalho FL, Simons BW, Eberhart CG, Berman DM. Notch signaling in prostate cancer: A moving target. Prostate. 2014;74(9):933-45. doi: 10.1002/pros.22811. [PubMed: 24737393]. [PubMed Central: PMC4323172].
  • 42. Siebel C, Lendahl U. Notch signaling in development, tissue homeostasis, and disease. Physiol Rev. 2017;97(4):1235-94. doi: 10.1152/physrev.00005.2017. [PubMed: 28794168].
  • 43. Louvi A, Artavanis-Tsakonas S. Notch and disease: A growing field. Semin Cell Dev Biol. 2012;23(4):473-80. doi: 10.1016/j.semcdb.2012.02.005. [PubMed: 22373641]. [PubMed Central: PMC4369912].
  • 44. Rusanescu G, Mao J. Notch3 is necessary for neuronal differentiation and maturation in the adult spinal cord. J Cell Mol Med. 2014;18(10):2103-16. doi: 10.1111/jcmm.12362. [PubMed: 25164209]. [PubMed Central: PMC4244024].
  • 45. Fortini ME. Notch and presenilin: A proteolytic mechanism emerges. Curr Opin Cell Biol. 2001;13(5):627-34. doi: 10.1016/S0955-0674(00)00261-1. [PubMed: 11544033].
  • 46. Selkoe D, Kopan R. Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci. 2003;26:565-97. doi: 10.1146/annurev.neuro.26.041002.131334. [PubMed: 12730322].
  • 47. Choi D, Park E, Jung E, Seong YJ, Yoo J, Lee E, et al. Laminar flow downregulates Notch activity to promote lymphatic sprouting. J Clin Invest. 2017;127(4):1225-40. doi: 10.1172/JCI87442. [PubMed: 28263185]. [PubMed Central: PMC5373895].
  • 48. Geng X, Cha B, Mahamud MR, Srinivasan RS. Intraluminal valves: Development, function and disease. Dis Model Mech. 2017;10(11):1273-87. doi: 10.1242/dmm.030825. [PubMed: 29125824]. [PubMed Central: PMC5719258].
  • 49. Fukuda D, Aikawa M. Expanding role of delta-like 4 mediated notch signaling in cardiovascular and metabolic diseases. Circ J. 2013;77(10):2462-8. [PubMed: 24025398]. [PubMed Central: PMC4545641].
  • 50. Giusti B, Sticchi E, De Cario R, Magi A, Nistri S, Pepe G. Genetic bases of bicuspid aortic valve: The contribution of traditional and high-throughput sequencing approaches on research and diagnosis. Front Physiol. 2017;8:612. doi: 10.3389/fphys.2017.00612. [PubMed: 28883797]. [PubMed Central: PMC5573733].
  • 51. Chandra R, Engeln M, Schiefer C, Patton MH, Martin JA, Werner CT, et al. Drp1 mitochondrial fission in D1 neurons mediates behavioral and cellular plasticity during early cocaine abstinence. Neuron. 2017;96(6):1327-1341 e6. doi: 10.1016/j.neuron.2017.11.037. [PubMed: 29268097]. [PubMed Central: PMC5747376].
  • 52. Acharya A, Hans CP, Koenig SN, Nichols HA, Galindo CL, Garner HR, et al. Inhibitory role of Notch1 in calcific aortic valve disease. PLoS One. 2011;6(11). e27743. doi: 10.1371/journal.pone.0027743. [PubMed: 22110751]. [PubMed Central: PMC3218038].
  • 53. Murtomaki A, Uh MK, Kitajewski C, Zhao J, Nagasaki T, Shawber CJ, et al. Notch signaling functions in lymphatic valve formation. Development. 2014;141(12):2446-51. doi: 10.1242/dev.101188. [PubMed: 24917500]. [PubMed Central: PMC4050693].
  • 54. Servian-Morilla E, Takeuchi H, Lee TV, Clarimon J, Mavillard F, Area-Gomez E, et al. A POGLUT1 mutation causes a muscular dystrophy with reduced Notch signaling and satellite cell loss. EMBO Mol Med. 2016;8(11):1289-309. doi: 10.15252/emmm.201505815. [PubMed: 27807076]. [PubMed Central: PMC5090660].
  • 55. Yu H, Takeuchi H, Takeuchi M, Liu Q, Kantharia J, Haltiwanger RS, et al. Structural analysis of Notch-regulating Rumi reveals basis for pathogenic mutations. Nat Chem Biol. 2016;12(9):735-40. doi: 10.1038/nchembio.2135. [PubMed: 27428513]. [PubMed Central: PMC4990500].
  • 56. Brzozowa-Zasada M, Piecuch A, Michalski M, Segiet O, Kurek J, Harabin-Slowinska M, et al. Notch and its oncogenic activity in human malignancies. Eur Surg. 2017;49(5):199-209. doi: 10.1007/s10353-017-0491-z. [PubMed: 29104587]. [PubMed Central: PMC5653712].
  • 57. Choi A, Illendula A, Pulikkan JA, Roderick JE, Tesell J, Yu J, et al. RUNX1 is required for oncogenic Myb and Myc enhancer activity in T-cell acute lymphoblastic leukemia. Blood. 2017;130(15):1722-33. doi: 10.1182/blood-2017-03-775536. [PubMed: 28790107]. [PubMed Central: PMC5639483].
  • 58. Ma W, Du J, Chu Q, Wang Y, Liu L, Song M, et al. hCLP46 regulates U937 cell proliferation via Notch signaling pathway. Biochem Biophys Res Commun. 2011;408(1):84-8. doi: 10.1016/j.bbrc.2011.03.124. [PubMed: 21458412].
  • 59. Guo Z, Jin X, Jia H. Inhibition of ADAM-17 more effectively down-regulates the Notch pathway than that of gamma-secretase in renal carcinoma. J Exp Clin Cancer Res. 2013;32:26. doi: 10.1186/1756-9966-32-26. [PubMed: 23659326]. [PubMed Central: PMC3662624].
  • 60. Thakurdas SM, Lopez MF, Kakuda S, Fernandez-Valdivia R, Zarrin-Khameh N, Haltiwanger RS, et al. Jagged1 heterozygosity in mice results in a congenital cholangiopathy which is reversed by concomitant deletion of one copy of Poglut1 (Rumi). Hepatology. 2016;63(2):550-65. doi: 10.1002/hep.28024. [PubMed: 26235536]. [PubMed Central: PMC4718747].
  • 61. Fahim AT, Daiger SP, Weleber RG. Nonsyndromic retinitis pigmentosa overview. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, editors. Gene Reviews®. Seattle: University of Washington; 1993.
  • 62. Chen X, Liu X, Sheng X, Gao X, Zhang X, Li Z, et al. Targeted next-generation sequencing reveals novel EYS mutations in Chinese families with autosomal recessive retinitis pigmentosa. Sci Rep. 2015;5:8927. doi: 10.1038/srep08927. [PubMed: 25753737]. [PubMed Central: PMC4354143].
  • 63. Bonilha VL, Rayborn ME, Bell BA, Marino MJ, Pauer GJ, Beight CD, et al. Histopathological comparison of eyes from patients with autosomal recessive retinitis pigmentosa caused by novel EYS mutations. Graefes Arch Clin Exp Ophthalmol. 2015;253(2):295-305. doi: 10.1007/s00417-014-2868-z. [PubMed: 25491159].
  • 64. Alfano G, Kruczek PM, Shah AZ, Kramarz B, Jeffery G, Zelhof AC, et al. EYS Is a Protein Associated with the Ciliary Axoneme in Rods and Cones. PLoS One. 2016;11(11). e0166397. doi: 10.1371/journal.pone.0166397. [PubMed: 27846257]. [PubMed Central: PMC5112921].
  • 65. Sun YY, Li L, Liu XH, Gu N, Dong HL, Xiong L. The spinal notch signaling pathway plays a pivotal role in the development of neuropathic pain. Mol Brain. 2012;5:23. doi: 10.1186/1756-6606-5-23. [PubMed: 22713619]. [PubMed Central: PMC3462686].
  • 66. Ji RR, Woolf CJ. Neuronal plasticity and signal transduction in nociceptive neurons: Implications for the initiation and maintenance of pathological pain. Neurobiol Dis. 2001;8(1):1-10. doi: 10.1006/nbdi.2000.0360. [PubMed: 11162235].
  • 67. Costigan M, Scholz J, Woolf CJ. Neuropathic pain: A maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32:1-32. doi: 10.1146/annurev.neuro.051508.135531. [PubMed: 19400724]. [PubMed Central: PMC2768555].
  • 68. Nishimura I, Thakor D, Lin A, Ruangsri S, Spigelman I. Frontiers in neuroscience molecular strategies for therapeutic targeting of primary sensory neurons in chronic pain syndromes. In: Kruger L, Light AR, editors. Translational pain research: From mouse to man. Boca Raton, FL: CRC Press/Taylor & Francis Llc; 2010.
  • 69. Tsuda M, Koga K, Chen T, Zhuo M. Neuronal and microglial mechanisms for neuropathic pain in the spinal dorsal horn and anterior cingulate cortex. J Neurochem. 2017;141(4):486-98. doi: 10.1111/jnc.14001. [PubMed: 28251660].
  • 70. Shetty AK, Bates A. Potential of GABA-ergic cell therapy for schizophrenia, neuropathic pain, and Alzheimer's and Parkinson's diseases. Brain Res. 2016;1638(Pt A):74-87. doi: 10.1016/j.brainres.2015.09.019. [PubMed: 26423935]. [PubMed Central: PMC5313260].
  • 71. Woolf CJ. Central sensitization: Implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2-15. doi: 10.1016/j.pain.2010.09.030. [PubMed: 20961685]. [PubMed Central: PMC3268359].
  • 72. Hsieh TH, Lee HHC, Hameed MQ, Pascual-Leone A, Hensch TK, Rotenberg A. Trajectory of parvalbumin cell impairment and loss of cortical inhibition in traumatic brain injury. Cereb Cortex. 2017;27(12):5509-24. doi: 10.1093/cercor/bhw318. [PubMed: 27909008]. [PubMed Central: PMC6075565].
  • 73. Yang C, Gao J, Wu B, Yan N, Li H, Ren Y, et al. Minocycline attenuates the development of diabetic neuropathy by inhibiting spinal cord Notch signaling in rat. Biomed Pharmacother. 2017;94:380-5. doi: 10.1016/j.biopha.2017.07.078. [PubMed: 28772216].
  • 74. Zolkiewska A. ADAM proteases: Ligand processing and modulation of the Notch pathway. Cell Mol Life Sci. 2008;65(13):2056-68. doi: 10.1007/s00018-008-7586-4. [PubMed: 18344021]. [PubMed Central: PMC2674646].
  • 75. Xie K, Jia Y, Hu Y, Sun Y, Hou L, Wang G. Activation of notch signaling mediates the induction and maintenance of mechanical allodynia in a rat model of neuropathic pain. Mol Med Rep. 2015;12(1):639-44. doi: 10.3892/mmr.2015.3379. [PubMed: 25707699].
  • 76. Xie K, Qiao F, Sun Y, Wang G, Hou L. Notch signaling activation is critical to the development of neuropathic pain. BMC Anesthesiol. 2015;15:41. doi: 10.1186/s12871-015-0021-0. [PubMed: 25821407]. [PubMed Central: PMC4377217].
  • 77. Tolkatchev D, Malik S, Vinogradova A, Wang P, Chen Z, Xu P, et al. Structure dissection of human progranulin identifies well-folded granulin/epithelin modules with unique functional activities. Protein Sci. 2008;17(4):711-24. doi: 10.1110/ps.073295308. [PubMed: 18359860]. [PubMed Central: PMC2271164].
  • 78. Bateman A, Bennett HP. The granulin gene family: From cancer to dementia. Bioessays. 2009;31(11):1245-54. doi: 10.1002/bies.200900086. [PubMed: 19795409].
  • 79. He Z, Ong CH, Halper J, Bateman A. Progranulin is a mediator of the wound response. Nat Med. 2003;9(2):225-9. doi: 10.1038/nm816. [PubMed: 12524533].
  • 80. Bhandari V, Palfree RG, Bateman A. Isolation and sequence of the granulin precursor cDNA from human bone marrow reveals tandem cysteine-rich granulin domains. Proc Natl Acad Sci U S A. 1992;89(5):1715-9. doi: 10.1073/pnas.89.5.1715. [PubMed: 1542665]. [PubMed Central: PMC48523].
  • 81. Lim HY, Albuquerque B, Haussler A, Myrczek T, Ding A, Tegeder I. Progranulin contributes to endogenous mechanisms of pain defense after nerve injury in mice. J Cell Mol Med. 2012;16(4):708-21. doi: 10.1111/j.1582-4934.2011.01350.x. [PubMed: 21645236]. [PubMed Central: PMC3822842].
  • 82. Altmann C, Vasic V, Hardt S, Heidler J, Haussler A, Wittig I, et al. Progranulin promotes peripheral nerve regeneration and reinnervation: Role of notch signaling. Mol Neurodegener. 2016;11(1):69. doi: 10.1186/s13024-016-0132-1. [PubMed: 27770818]. [PubMed Central: PMC5075406].
  • 83. Hardt S, Heidler J, Albuquerque B, Valek L, Altmann C, Wilken-Schmitz A, et al. Loss of synaptic zinc transport in progranulin deficient mice may contribute to progranulin-associated psychopathology and chronic pain. Biochim Biophys Acta Mol Basis Dis. 2017;1863(11):2727-45. doi: 10.1016/j.bbadis.2017.07.014. [PubMed: 28720486].
  • 84. Chitramuthu BP, Bennett HPJ, Bateman A. Progranulin: A new avenue towards the understanding and treatment of neurodegenerative disease. Brain. 2017;140(12):3081-104. doi: 10.1093/brain/awx198. [PubMed: 29053785].
  • 85. Beel S, Moisse M, Damme M, De Muynck L, Robberecht W, Van Den Bosch L, et al. Progranulin functions as a cathepsin D chaperone to stimulate axonal outgrowth in vivo. Hum Mol Genet. 2017;26(15):2850-63. doi: 10.1093/hmg/ddx162. [PubMed: 28453791]. [PubMed Central: PMC5886064].
  • 86. Vasic V, Schmidt MHH. Resilience and vulnerability to pain and inflammation in the hippocampus. Int J Mol Sci. 2017;18(4). doi: 10.3390/ijms18040739. [PubMed: 28362320]. [PubMed Central: PMC5412324].
  • 87. Schafer MKE, Tegeder I. NG2/CSPG4 and progranulin in the posttraumatic glial scar. Matrix Biol. 2018;68-69:571-88. doi: 10.1016/j.matbio.2017.10.002. [PubMed: 29054751].
  • 88. Shang Y, Smith S, Hu X. Role of Notch signaling in regulating innate immunity and inflammation in health and disease. Protein Cell. 2016;7(3):159-74. doi: 10.1007/s13238-016-0250-0. [PubMed: 26936847]. [PubMed Central: PMC4791423].
  • 89. Nakano T, Fukuda D, Koga J, Aikawa M. Delta-like ligand 4-Notch signaling in macrophage activation. Arterioscler Thromb Vasc Biol. 2016;36(10):2038-47. doi: 10.1161/ATVBAHA.116.306926. [PubMed: 27562914]. [PubMed Central: PMC5033717].
  • 90. Murphy TL, Grajales-Reyes GE, Wu X, Tussiwand R, Briseno CG, Iwata A, et al. Transcriptional control of dendritic cell development. Annu Rev Immunol. 2016;34:93-119. doi: 10.1146/annurev-immunol-032713-120204. [PubMed: 26735697]. [PubMed Central: PMC5135011].
  • 91. Meng L, Hu S, Wang J, He S, Zhang Y. DLL4(+) dendritic cells: Key regulators of Notch signaling in effector T cell responses. Pharmacol Res. 2016;113(Pt A):449-57. doi: 10.1016/j.phrs.2016.09.001. [PubMed: 27639599]. [PubMed Central: PMC5571445].
  • 92. Alberi L, Liu S, Wang Y, Badie R, Smith-Hicks C, Wu J, et al. Activity-induced Notch signaling in neurons requires Arc/Arg3.1 and is essential for synaptic plasticity in hippocampal networks. Neuron. 2011;69(3):437-44. doi: 10.1016/j.neuron.2011.01.004. [PubMed: 21315255]. [PubMed Central: PMC3056341].
  • 93. Wang H, Tian Y, Wang J, Phillips KL, Binch AL, Dunn S, et al. Inflammatory cytokines induce NOTCH signaling in nucleus pulposus cells: implications in intervertebral disc degeneration. J Biol Chem. 2013;288(23):16761-74. doi: 10.1074/jbc.M112.446633. [PubMed: 23589286]. [PubMed Central: PMC3675609].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments